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Abstract. We review our theoretical approach to the optical response of low-dimensional
semiconductor structures. The method is based on the density-matrix formalism and can treat
low-density (excitonic) and high-density (gain) regimes on the same footing while retaining the
full complexity of realistic nanostructures. We discuss in particular its generalization for studying
the combined effects of dielectric and quantum confinement, as well as novel developments aimed
at the analysis of local absorption spectra.

We examine the main effects of electron–hole Coulomb correlation on the optical spectra of
semiconductor quantum wires, where it determines the suppression of band-edge singularities and
the peculiar scaling properties of excitonic binding and non-linearities. On the basis of our recent
results on different types of nanostructure, we present a critical discussion of possible strategies
for tailoring electron–hole Coulomb interaction, and predicting its influence on near-field spectra.

1. Introduction

During the last decade the optical properties of quasi-one-dimensional structures, the so-called
quantum wires (QWRs), have become a topic of increasing interest. The initial motivation was
related to the one-dimensional (1D) singularity in the single-particle density of states (DOS),
that was expected to induce sharp peaks in the optical spectra, thereby leading to structures with
improved optical efficiency as compared to their two-dimensional (2D) and three-dimensional
(3D) counterparts [1].

Coulomb correlations strongly modify this simple picture. This was first pointed out by
Ogawa and Takagahara [2], using an idealized 1D model. More recently, calculations have
been performed [3] within a fully 3D approach based on the density-matrix formalism, which
results in a set of generalized (multisubband) semiconductor Bloch equations (SBE) [4–6].
This method is able to treat both low-density (excitonic) and high-density (gain) regimes on
the same footing, while retaining the full complexity of state-of-the-art samples. For example,
it has been used to describe structures obtained by epitaxial growth on non-planar substrates (V-
shaped wires) [1,7–9] or by cleaved-edge quantum well overgrowth (T-shaped wires) [10–12],
where the lateral extension of the ground single-particle states is still significant, the excited
states gradually approach a 2D-like behaviour, and the subband separation is relatively small,
so the coupling between different subbands may be important.
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Our calculations [3] have shown that

(a) The correlated absorption spectra of realistic wires do show a strong quenching of the 1D
single-particle singularity, in agreement with reference [2]; this effect does not depend on
details of the wire cross-section. The Sommerfeld factor, which is greater than unity for the
bulk and in quantum wells (the so-called Coulomb enhancement), is instead smaller than
unity for QWRs (Coulomb suppression), thus reducing the influence of dimensionality on
the optical spectra.

(b) The Coulomb-induced suppression of the 1D singularity is found to hold not only in the
linear regime but also at higher carrier densities, and to persist in the gain regime.

The above results have had implications for prospective devices, since the initial
motivations—based on single-particle models—are now recognized as being far too simplified.
Given the Coulomb-induced suppression of the band-edge singularity, the most relevant
features arising from electron–hole correlation are bound- (below-band-gap) excitonic states,
which, for relatively low carrier densities, are found to dominate the optical response of the
system. Therefore one of the most important goals is now the achievement of a large exciton
binding energyEb, as compared to the thermal energykTroom: this is indeed a prerequisite
for exploiting excitonic non-linearities in optical devices that can operate efficiently at room
temperature.

In principle, enhancingEb in QWRs is an easy task: in quasi-1D (q1D) structures, in
fact,Eb can be made arbitrarily large [13] provided that one is able to squeeze the electron
and hole wavefunctions to a sufficient extent, thereby increasing the Coulomb energy. Note
that this contrasts with the case for 2D systems, for which, even in the ideal case of perfect
2D confinement, the binding energy of the ground-state exciton is limited to four times the
3D effective rydberg. In practice, for the materials of choice for technological application—
GaAs/AlAs—this strategy is difficult to implement. While for quantum wells (QWs)Eb has
indeed been observed to approach the theoretical limit when the well thickness is progressively
reduced [14], for QWRs the reported values ofEb are only slightly larger than for QWs,
and still well belowkTroom. In fact, the strong confinement regime which is necessary to
enhance the relatively low value ofEb for bulk GaAs (∼4 meV) is still hard to obtain with the
relatively shallow confinements permitted by present GaAs/AlAs-based structures. Despite
the substantial recent experimental effort, this limitation makes order-kTroom exciton binding
energy a difficult goal.

A discussion of the intrinsic limitations ofEb for realistic QWRs is therefore important.
It should be noted that for a given confinement length (i.e., electron–hole Coulomb interaction
energy),Eb is determined by the Coulomb-to-kinetic-energy ratio, whose value is fixed to
−2 for purely 2D and 3D Coulombic systems; since this ratio is ill-defined for purely 1D
Coulombic systems (both kinetic and Coulomb energies diverge) and, moreover, the virial
theorem does not hold in the presence of a confining potential, it might be hoped that a more
convenient (i.e., smaller) ratio could be obtained for properly designed structures. In this
spirit, we have recently performed [15] a detailed investigation of excitonic confinement for
a wide class of state-of-the-art GaAs/AlGaAs QWRs, with the aim of investigating whether,
in addition to the squeezing of the wavefunction (which, as we have discussed, is somewhat
limited by the choice of the materials), geometrical tailoring of the structure could be used
to enhance the binding energy. Our results show that, in general, q1D systems are indeed
advantageous with respect to 2D ones, since smaller Coulomb-to-kinetic-energy ratios are
possible in the former system in the strong-confinement limit. However, such deviations scale
in a universal manner with respect to the wire cross-section. Consistently, for all GaAs-based
QWRs structures considered,Eb is found to be very similar and always smaller thankTroom.
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Motivated by these results, we have recently proposed an alternative approach to enhance
Eb [16], which combines the effects ofquantum confinementdiscussed so far, with those
of dielectric confinement, i.e., confinement effects induced by dielectric mismatch. As first
pointed out by Keldysh [17], the electron–hole Coulomb attraction can be greatly enhanced
in layered structures with strong dielectric mismatch, due to the polarization charge induced
at the interfaces. For conventional semiconductor nanostructures such as GaAs/AlGaAs-
or GaAs/InGaAs-based samples, this is a minor effect due to the small dielectric mismatch
between the constituents [18]. On the other hand, interfaces between III–V semiconductors
and materials with very different dielectric constants, such as oxides, are usually very far
from the excellent optical quality of the conventional ones. The proposed approach is based
on the idea thatquantum and dielectric confinement can be spatially separated, since they
are effective over different length scales. This may be achieved by adding to a conventional
semiconductor QWR remote insulating layers which may induce strong dielectric confinement
without degrading the good optical properties ensuing from quantum confinement, hence the
termremote dielectric confinement(RDC).

When dielectrically modulated structures are investigated, the electron–hole interaction
is no longer the bare Coulomb interaction; instead, it must be explicitly calculated, for a given
structure, as the Green’s function of the Laplace operator with a spatially dependent dielectric
constant. Accordingly, we have generalized our multisubband SBE approach described in [3]
in order to include such renormalized electron–hole interaction as well as self-energy effects.
In reference [15] we have shown that RDC applied to state-of-the-art GaAs/AlAs-based QWRs
may allow room-temperature exciton binding.

On very general grounds, RDC can be seen as a practical method for enhancing
the electron–electron and electron–hole interaction within the wire, without disturbing the
quantum-confined single-particle states (apart from the small self-energy effects, to be
discussed in detail later). One is therefore tailoring the Coulomb interaction, similarly to
what is done—although in the opposite direction—by use of screening from free carriers. In
this respect, we expect that RDC might find other fields of application in the transport and
many-body properties in q1D systems.

The aim of this paper is to provide a critical review of the properties of excitonic
confinement in realistic semiconductor QWRs. After a comprehensive description of the
theoretical approach adopted in references [3, 15, 16, 19], we discuss the resulting physical
picture paying particular attention to the interplay between quantum and dielectric confinement,
as a potential strategy for achieving exciton binding at room temperature, and to local excitation
optical spectra of coupled QWR structures.

2. Theory of linear and non-linear optical response in quantum wires

In this section we review and discuss our theoretical approach to the study of the linear and non-
linear optical response of low-dimensional semiconductor structures. The proposed density-
matrix formulation allows us to study bothglobal and local optical excitations and can be
generalized to include effects due toremote dielectric confinement.

In order to investigate the optical response of a semiconductor structure, the key quantity
to be evaluated is the optical polarization field, i.e., the degree of polarization induced in the
carrier system by the optical excitation. From a microscopic point of view, the local (i.e.,
space-dependent) polarization can be written as

P (r, t) = e
〈
Ψ̂†(r, t)rΨ̂(r, t)

〉
(1)

wheree is the electronic charge,〈· · ·〉 denotes a proper ensemble average, and the field operator
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Ψ̂(r, t) in the Heisenberg picture describes the microscopic time evolution of the carrier system.
Since in this paper we focus on optical excitations, it is convenient to work within the

so-called electron–hole picture. This corresponds to writing the field operatorΨ̂(r, t) as a
linear combination of single-particle electron and hole states (9i and9j ):

Ψ̂(r) =
∑
i

ĉi9i(r) +
∑
j

d̂
†
j 9
∗
j (r) (2)

whereĉi andd̂j denote destruction operators for an electron in statei and a hole in statej . Here,
i andj are appropriate sets of quantum numbers which label the single-particle wavefunctions
9i/j and energy levelsεi/j involved in the optical transition.

By inserting the above electron–hole expansion into equation (1), and neglecting intraband
contributions (absent for the case of optical excitations), the local polarization can be rewritten
as

P (r, t) =
∑
ij

[
M ∗

ij (r)pij (t) + c.c.
]

(3)

where

Mij (r) = e9∗i (r)r9∗j (r) (4)

is the local (i.e. space-dependent) dipole matrix element, and

pji = 〈d̂j ĉi〉 (5)

are non-diagonal (i.e. interband) elements of the single-particle density matrix, also referred
to as interband polarizations.

The time evolution of the above interband polarizationspji is governed by the so-called
semiconductor Bloch equations (SBE) [4,20,21]:

∂

∂t
fi = 1

ih̄

∑
j ′
(Uij ′p∗j ′i − U∗ij ′pj ′i ) +

∂fi

∂t

∣∣∣∣
inco

∂

∂t
fj = 1

ih̄

∑
i ′
(Ui ′jp∗ji ′ − U∗i ′jpji ′) +

∂fj

∂t

∣∣∣∣
inco

∂

∂t
pji = 1

ih̄

∑
i ′j ′
(Eii ′δjj ′ + Ejj ′δii ′)pj ′i ′ +

1

ih̄
Uij (1− fi − fj ) +

∂pji

∂t

∣∣∣∣
inco

(6)

wherefi = 〈ĉ†
i ĉi〉 andfj = 〈d̂†

j d̂j 〉 denote electron and hole distribution functions, i.e.,
diagonal density-matrix elements. Here,

Uij = Uij −
∑
i ′j ′
Vij ′ji ′pj ′i ′ (7)

and

Eii ′ = εiδii ′ −
∑
i ′′
Vii ′′i ′i ′′fi ′′

Ejj ′ = εj δjj ′ −
∑
j ′′
Vjj ′′j ′j ′′fj ′′

(8)

are, respectively, the Rabi and electron/hole energies renormalized by the Coulomb interaction
[4,20,21]. The general form of the ‘undressed’ Rabi frequencyU in (7) induced by a space-
and time-dependent light fieldE(r, t) is

Uij (t) = −
∫
Mij (r) ·E(r, t) dr. (9)



Theory of excitonic confinement 5973

Here, theV are full three-dimensional Coulomb matrix elements within the electron–hole
(ij ) single-particle representation. The last term in equation (6) accounts for incoherent (i.e.,
scattering and diffusion) processes. They do not play a central role for the physical phenomena
discussed in the present paper; therefore, they will be simply treated within the usual relaxation-
time approximation.

In order to study both global and local optical spectra, as a first step one needs to evaluate the
stationary solutions of the SBE (6). They can easily be found in the so-called quasi-equilibrium
regime, i.e. by assuming equilibrium distribution functionsfi , fj ; as described in [3], the
equation of motion for the interband polarizationpij can be transformed into an eigenvalue
problem (within the single-particle basisij ), whoseλth solution, describing excitonic states,
provides the complex energy eigenvalue6λ = h̄ωλ − i0λ and the corresponding eigenvector
cλ. The eigenvector componentscλij can be regarded as matrix elements of the unitary
transformationS connecting our original single-particle basisij with the excitonic basisλ:

cλij = Sij,λ = 〈ij |λ〉. (10)

The desired stationary solutions within this new excitonic pictureλ are given by

p(t) = pλe6λt/ih̄ (11)

with

pλ = 1

ih̄

∑
ij

cλ∗ij Uij (ω
λ)(1− fi − fj ) (12)

whereUij (ω) is the Fourier transform of the Rabi energy in (13).

2.1. Global response analysis

For the case of a homogeneous (i.e. space-independent) optical excitationEo the Rabi energy
Uij in equation (9) (within the dipole approximation) is given by

Uij (t) = −M̄ij ·E(t) (13)

where

M̄ij =
∫
Mij (r) dr (14)

is the total dipole matrix element. Moreover, for the case of a homogeneous excitation the key
quantity—the one measured experimentally—is the total polarization of the system, given by
the space integral of the local polarization field in (3):

P̄ (t) =
∫
P (r, t) dr =

∑
ij

[
M̄ ∗

ijpij (t) + c.c.
]
. (15)

The global (linear as well as non-linear) absorption spectrum is obtained as the imaginary part
of the optical susceptibility. This, in turn, is related to the Fourier transform of the above total
polarization, which in the excitonic pictureλ can be rewritten as

P̄ (t) =
∑
λ

[
M̄λ∗pλ(t) + c.c.

]
(16)

with

M̄λ =
∑
ij

cλ∗ij M̄ij . (17)
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By inserting the stationary solution (11) as well as the dipole matrix element (17) into
equation (15) and then taking its Fourier transform, we get

P̄ (ω) = −ih̄
∑
λ

M̄λ∗pλ

6λ − h̄ω = −
∑

λ,ij,i ′j ′

cλijM̄
∗
ij c

λ∗
i ′j ′Ui ′j ′(1− fi − fj )
6λ − h̄ω . (18)

Substituting the explicit form of the Rabi energyU we finally get

P̄ (ω) = χ̄(ω) ·E(ω) (19)

with

χ̄(ω) =
∑

λ,ij,i ′j ′

cλijM̄
∗
ij × cλ∗i ′j ′M̄i ′j ′(1− fi − fj )

6λ − h̄ω . (20)

This is the desired microscopic expression for the susceptibility tensorχ̄, whose imaginary
part is proportional to the global absorption spectrum:

ᾱ(ω) ∝ = [χ̄(ω)] . (21)

2.2. Local response analysis

Let us now consider the case of a local (i.e. space-dependent) optical excitationE(r). Contrary
to the homogeneous excitation case, the electromagnetic field cannot be factorized as in
equation (13), and the Rabi energyU should be evaluated according to the general expression
(9). Similarly, in order to investigate the space-dependent response of the system through a
local optical excitation, we need to evaluate the local (rather than the total) polarization field
given by (3), which can be written again in ourλ-representation as

P (r, t) =
∑
λ

[
Mλ∗(r)pλ(t) + c.c.

]
(22)

with

Mλ(r) =
∑
ij

cλ∗ij Mij (r). (23)

By inserting the stationary solution (11) as well as the dipole matrix element (23) into
equation (22) and then taking its Fourier transform, we get

P (r, ω) = −ih̄
∑
λ

Mλ∗(r)pλ

6λ − h̄ω = −
∑

λ,ij,i ′j ′

cλijM
∗
ij (r)c

λ∗
i ′j ′Ui ′j ′(1− fi − fj )
6λ − h̄ω . (24)

Using the explicit form of the Rabi energy in (9), we finally get

P (r, ω) =
∫

dr′ χ(r, r′, ω) ·E(r, ω) (25)

where

χ(r, r′, ω) =
∑

λ,ij,i ′j ′

cλijM
∗
ij (r)× cλ∗i ′j ′Mi ′j ′(r

′)(1− fi − fj )
6λ − h̄ω (26)

is the desired microscopic expression for our space-dependent susceptibility tensor.
For semiconductor structures described within the usual envelope-function formalism with

isotropic electron and hole bulk dispersions, the local dipole matrix elementMij (r) given by
(4) is simply given by

Mij (r) =Mbψ
∗
i (r)ψ

∗
j (r) (27)
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whereψi/j (r) are single-particle electron/hole envelope functions andMb is the bulk dipole
matrix element. Within such an approximation scheme, the susceptibility tensorχ in (26)
becomes diagonal, with identical elements given by

χ(r, r′, ω) = |Mb|2
∑

λ,ij,i ′j ′
cλij c

λ∗
i ′j ′(1− fi ′ − fj ′)

ψi(r)ψj (r)ψ
∗
i ′ (r
′)ψ∗j ′(r

′)

6λ − h̄ω . (28)

Given the susceptibility function in (28), the total absorption power in a generic
semiconductor structure can be evaluated according to

α(ω) ∝
∫

dr
∫

dr′ = [E(r, ω)χ(r, r′, ω)E(r′, ω)] . (29)

In the usual definition of the absorption coefficient within the dipole approximation given in
equation (21) the non-locality ofχ is neglected:χ(r, r′) ∝ δ(r − r′). When non-locality
is taken into account, it is no longer possible to define an absorption coefficient that locally
relates the absorbed power density to the light intensity.

However, considering a light field with a given profileξ centred around the beam position
R,E(r, ω) = E(ω)ξ(r−R), we may define a local absorption that is a function of the beam
position, and relates thetotal absorbed power to the power of alocal excitation (illumination
mode):

αξ (R, ω) ∝
∫
= [χ(r, r′, ω)] ξ(r −R)ξ(r′ −R) dr dr′. (30)

This expression is in principle not limited to low photoexcitation intensities; together with
equation (28) it provides a general description of linear as well as non-linear local response,
i.e., from excitonic absorption to the gain regime.

In the linear response regime, 1− fi − fj ' 1, and the quantity

9λ(re, rh) =
∑
ij

cλijψi(re)ψj (rh) (31)

can be identified with the exciton wavefunction; in this case the explicit form of the local
absorption coefficient (30) is given by

αξ (R, ω) =
∑
λ

αλξ (R, ω) (32)

where

αλξ (R, ω) ∝
∣∣∣∣∫ 9λ(r, r)ξ(r −R) dr

∣∣∣∣2 . (33)

The effects of spatial coherence of quantum states are easily understood in the linear
regime on the basis of equation (33). For a spatially homogeneous electromagnetic (EM) field,
the absorption spectrum probes the average of9λ over the whole space (global spectrum). In
the opposite limit of an infinitely narrow probe beam,α maps|9λ|2; the local absorption is
non-zero at any point where the exciton wavefunction gives a finite contribution. It is therefore
clear that ‘forbidden’ excitonic transitions, not present in the global spectrum, may appear in
the local one. In the intermediate regime of a narrow but finite probe, it is possible that a
cancellation of the contributions from9λ takes place between different points in space leading
to a non-trivial localization of the absorption. The result will then be quite sensitive to the
extent of the light beam.
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3. The physical origin of exciton confinement

Both free-carrier and excitonic confinement effects are described by the SBE approach (6).
In particular, the correlated energy spectrum in the low-density limit is given by eigenvalues
of the polarization equation; the necessary ingredients are single-particle envelope functions
ψi/j and energy levelsεi/j , as well as the Coulomb matrix elementsV in equations (7) and (8).
These, in turn, are obtained from a numerical solution of the Schrödinger equation (in actual
calculations we use a plane-wave representation; see [3]) with given confinement potential
profile V e/hc and bulk effective massesme/h for electrons/holes. The explicit form of the
Coulomb matrix elements entering our SBE is given by

Vl1l2l3l4 =
∫

dr
∫

dr′ ψ∗l1(r)ψ
∗
l2
(r′)V (r − r′)ψl3(r′)ψl4(r) (34)

whereV (r, r′) is the two-body Coulomb potential.

3.1. Quantum confinement

When no spatial variation of the dielectric constant exists in the structure, the two-body potential
V (r, r′) entering equation (34) reduces to the usual Coulomb potential

V (r, r′) = ± e2

4πε0|r − r′| (35)

whereε0 is the homegeneous dielectric constant of the material. Furthermore, the confinement
potential is simply dictated by the conduction/valence band discontinuitiesV

e/h
c (r) (quantum

confinement), whose geometrical shape may be derived, e.g., from TEM images, as in [8]. The
effective potential induces a q1D free-carrier confinement, i.e., a localization of the electron
and hole envelope functionsψi/j which, in turn, results in an increase of the Coulomb matrix
elements in (34), and hence the enhancement ofEb with respect to the bulk case (excitonic
confinement).

3.2. Dielectric confinement

For a spatially modulated dielectric constantε(r), the Coulomb interaction between two
charged particles—electrons and/or holes—sited at positionsr andr′ is given by

V 0(r, r′) = ±e2G(r, r′) (36)

whereG(r, r′) is the Green’s function of the effective Poisson equation:

∇r · ε(r)∇rG(r, r
′) = −δ(r − r′). (37)

Therefore, the space dependence ofε(r) modifiesG(r, r′) with respect to the homogeneous
case, equation (35); the Green’s functionG(r, r′)—and thus the corresponding potentialV 0—
depends, in general, both on the relative coordinater−r′ and on the centre-of-mass coordinate
(r + r′)/2. This, in turn, gives rise to a space-dependent self-energy term [22]:

1ε(r) = e2

2
lim
r′→r

[
G(r, r′)−GB(r, r′)

]
(38)

where

GB(r, r′) = 1

4πε(r)|r − r′| (39)

is the (local) bulk solution of (37). The self-energy1ε can be regarded as a local correction
(equal for electrons and holes) which adds to the confining potentialV

e/h
c in determining
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the single-particle envelope functions9i/j and the corresponding energy levelsεi/j . From a
physical point of view, such terms describe the Coulomb interaction between the carrier and the
distribution of polarization charges induced—by the carrier itself—at the dielectric interfaces.
This effect is often described in terms of classical image charges.

As illustrated in section 6, the effect of dielectric confinement on the single-particle
properties is not negligible but it is usually dominated by quantum-confinement effects. In
contrast, the presence of dielectric mismatch is found to play a crucial role in modifying the
excitonic properties of the system. This is due to the strong increase of the Coulomb matrix
elements in (34), which is mainly ascribed to the modifications due to dielectric mismatch of
the Green’s functionG in equation (36).

Generally speaking, the main ingredient for a quantitative evaluation of dielectric
confinement effects—both single-particle and excitonic—is the two-body Green’s function
introduced in (36). This can be obtained from a numerical solution of the Poisson equation
(37), that we also perform in terms of a plane-wave expansion with periodic boundary
conditions [23].

4. Coulomb-induced suppression of band-edge singularities

In this section we review Coulomb-correlation effects on the global optical spectra of realistic
QWR structures [3, 21]. By means of the theoretical scheme presented in section 2 we have
investigated realistic V- as well as T-shaped wire structures. In particular, here we show results
for the GaAs/AlGaAs V-shaped wire structure of reference [8].

(a) Excitonic absorption regime. Let us start by considering the optical response of the system
in the low-density limit. In figure 1 we show the linear absorption spectra obtained when
taking into account the lowest wire transition only. Results of our Coulomb-correlated
(CC) calculation are compared to those from the free-carrier (FC) model. As we can
see, electron–hole correlation introduces two important effects. First, the excitonic peak
arises below the onset of the continuum, with a binding energy of about 12 meV, in
excellent agreement with experiments [8]. Second, and more important, one finds a
strong suppression of the 1D DOS singularity. A detailed analysis of the physical origin
of such suppression [3] has shown that the quantity which is mainly modified by CC is
the oscillator strength (OS). In figure 2 the ratio between the CC and FC OS is plotted as a

Figure 1. Linear absorption spectra of a realistic V-shaped wire structure. Solid curve: Coulomb-
correlated (CC) result; dashed curve: free-carrier (FC) result. Here only the first electron and
hole subbands are included for clarity (for the full 12-subband spectrum, see figure 3). After
reference [21].
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Figure 2. The oscillator strength (OS) ratio and density of states (DOS) versus excess energy;
corresponding to the Coulomb-correlated absorption spectrum of figure 1 (solid curve). After
reference [21].

function of excess energy (solid curve); this ratio is always less than one and goes to zero
at the band edge. Such vanishing behaviour is found to dominate the 1D DOS singularity
and, as a result, the absorption spectrum exhibits a regular behaviour at the band edge
(solid curve in figure 1).

(b) Gain regime. Most of the potential QWR applications, i.e., 1D lasers and modulators,
operate in strongly non-linear response regimes [1]. In such conditions, the above linear
response analysis has to be generalized taking into account additional factors such as
(i) screening effects, (ii) band renormalization, and (iii) phase-space filling.

Figure 3 reports quantitative results for non-linear absorption spectra of realistic V-shaped
wire structures at different carrier densities at room temperature. As a reference we also
show the results obtained by including the lowest subband only (figure 3(a)). In the low-
density limit (case A:n = 104 cm−1) we clearly recognize the excitonic peak. With increasing
carrier density, the strength of the excitonic absorption decreases due to phase-space filling and
screening of the attractive electron–hole interaction, and moreover the band renormalization
leads to a red-shift of the continuum. At a density of 4× 106 cm−1 (case D) the spectrum
already exhibits a negative region corresponding to stimulated emission, i.e. a gain regime.
As desired, the well pronounced gain spectrum extends over a limited energy region (smaller
than the thermal energy); however, its shape differs considerably from the ideal FC one (the

Figure 3. Non-linear absorption spectra of the V-shaped quantum wire of figure 3: (a) the single-
subband case; (b) the realistic 12-subband case. After reference [21].
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curve marked with diamonds in the same figure). In particular, the band-edge singularity in
the ideal FC gain spectrum is clearly smeared out by electron–hole correlation. The overall
effect is a broader and less pronounced gain region.

Finally, figure 3(b) shows the non-linear spectra corresponding to the realistic case of
a 12-subband V-shaped wire. In comparison with the single-subband case (figure 3(a)), the
multisubband nature is found to play an important role in modifying the typical shape of the gain
spectra, which for both CC and FC models turns out to extend over a range much larger than that
of the single-subband case for the present wire geometry. In addition, the Coulomb-induced
suppression of the single-subband singularities, here also due to intersubband-coupling effects,
tends to reduce the residual structures in the gain profile. Therefore, even in the ideal case of a
QWR with negligible disorder and scattering-induced broadening, our analysis indicates that,
for the typical structure considered, the shape of the absorption spectra over the whole density
range differs considerably from the sharp FC spectrum of figure 1.

5. Shape-independent scaling of excitonic binding

As discussed in the previous section, the single-particle band-edge singularity of q1D systems is
suppressed by virtue of electron–hole interaction, and the oscillator strength is transferred to the
bound (below-band-gap) excitonic states which, for relatively low carrier densities, dominate
the optical response of the system. To exploit such excitonic absorption in opto-electronic
devices one needs to achieve a large exciton binding energyEb compared to the thermal one;
indeed, this has become a crucial goal in the field of semiconductor nanostructures. In this
section, we discuss the intrinsic limitations ofEb for realistic QWRs.

For a given confinement length (i.e., given electron–hole Coulomb interaction energy),
Eb results as a balance between the kinetic energy〈K〉 and the Coulomb energy〈V 〉 (here
and throughout this section, the symbol〈· · ·〉 denotes the expectation value over the exciton
ground state). The ratioα = 〈V 〉/〈K〉 is fixed to−2 in strictly 2D and 3D Coulomb systems
by virtue of the virial theorem, soEb = − 1

2〈V 〉; therefore, even for realistic q2D structures,
where the virial theorem does not hold due to the presence of a confining potential, we expect
α to deviate only slightly from−2. In strictly 1D systems, instead,α is ill-defined because
both〈V 〉 and〈K〉 diverge. Therefore, it might be hoped that in q1D systems a more convenient
ratio (i.e., largerα) could be obtained for properly designed structures.

In this spirit, in this section we review the theoretical analysis presented in [15], where a
detailed investigation of excitonic confinement has been performed for a wide class of state-
of-the-art GaAs/AlGaAs QWRs, to clarify whether geometrical tailoring of the structure could
be used to enhance the binding energy. We focused on realistic V- as well as T-shaped wire (V-
wire and T-wire) structures; for both geometries, two different sets of conduction and valence
band offsets (V e

c andV hc , respectively) have been considered, in order to simulate both low-x

Al xGa1−xAs and pure AlAs barrier compositions. In total, we consider four sets of samples,
which we label V1, V2, T1, T2, where V (T) refers to the wire shape, and 1 (2) refers to the low
(high) barriers. For V-wires, we start from the reference-sample TEM profile of reference [8],
and magnify or reduce both confinement directions by the same scale factor. Each sample is
characterized by the confinement lengthLV at the bottom of the V-shaped region. For T-wires,
we consider a set of samples with several values of the parent QW width,LT , which includes
the samples of reference [11]. The wire geometries are sketched as insets in figure 4, and the
material parameters characterizing the four QWR sets are given in [15].

Figure 4 showsEb and the corresponding mean potential energy〈V 〉 as functions of the
characteristic size parameter of the wire,LV or LT . As expected, both binding and potential
energies increase with decreasingLV or LT ; for samples V2 and T2, corresponding to AlAs
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Figure 4. The exciton binding energyEb and mean potential energy〈V 〉 of different V-wires (top)
and T-wires (bottom). Full dots indicate high-barrier samples and empty dots indicate low-barrier
samples, according to the keys. The wire geometries are sketched in the left-hand insets, with
indications of the relevant geometrical parameters. The calculated effective exciton Bohr radius,a,
versus the relevant geometrical parameter is shown in the right-hand inset in each case. The circled
points refer to sample parameters corresponding to reference [8] (V-wires) and reference [11]
(T-wires). After reference [15].
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barriers, the excitonic binding energy is larger compared to the case of low-barrier samples
V1 and T1.

Two important features result from figure 4. First, a given value ofEb corresponds to rather
different values ofLV andLT (note the different scale). Therefore, such size parameters are
not adequate to characterize the actual exciton confinement. To introduce a more appropriate
quantity, we define an effective exciton Bohr radius

a =
〈

1

r

〉−1

(40)

whose inverse is clearly proportional to the potential energy and, for a 3D bulk semiconductor,
coincides with the usual exciton Bohr radiusa0. The insets in figure 4 showa as a function
of the relevant geometrical parameter,LV or LT . A same value ofa corresponds to different
values ofLV andLT , with LV always larger thanLT . Note that samples with similar binding
energies correspond to similar values ofa (see, e.g., the circled points, to be discussed below).
The second feature resulting from figure 4 is that the ratio of binding to potential energy is
rather constant (shape and barrier independent), and relatively close to one. This tells us that
for all samples considered the mean kinetic energy〈K〉 is much smaller (about four times)
than the potential energy.

Both features indicate a shape-independent scaling of the exciton binding energy. When we
plot the binding energyEb versus the corresponding exciton radiusa for all samples (figure 5)
we obtain a universal (shape- and barrier-independent) curve,Eb ∼ 1/a. A universal scaling
of the mean potential and kinetic energy is apparent in the〈V 〉–〈K〉 plot reported in the inset
of figure 5; to a very good approximation, all sets of points for V- and T-wires fall on a straight
line with slopeα very close to 4. For comparison, we have performed analogous calculations
for a set of QWs, and the results are also shown in figure 5. We find thatEb scales witha
similarly to the case for q1D structures, although with a different prefactor. If〈V 〉 is plotted
versus〈K〉 (see the inset), the slope is now 2 within numerical accuracy.

We can therefore conclude that, for q1D structures in the strong-confinement regime
considered here, the potential-to-kinetic-energy ratio is enhanced with respect to the value
imposed by the conventional virial theorem for 3D and ideal 2D systems, which we find to
be also followed by QWs of comparable confinement lengths. In this respect, our findings
confirm that q1D confinement is indeed advantageous for the purpose of obtaining enhanced
exciton binding, and provide a general and quantitative prescription for tailoringEb by tuning
the effective exciton Bohr radiusa through the geometrical size parameters.

At the same time, however, the universal scaling law shown in figure 5 sets a clear limit
for the possible effects of choosing different shapes of the wire cross-section, as long as they
correspond to similar values of the effective Bohr radiusa. For a given value ofa, there is no
hope of further increasingEb by tailoring the potential-to-kinetic-energy ratioα through the
geometry of the confining profile.

6. Enhanced exciton binding caused by remote dielectric confinement

The previous analysis shows that the bulk exciton binding energyEb can be strongly enhanced
by confining electron and hole wavefunctions in nanostructures of low dimensionality (quantum
confinement), the most promising systems being q1D structures; within GaAs-based samples,
however, the observed values ofEb are still well below the room-temperature thermal energy,
kTroom.

As mentioned in the introduction, in principle the electron–hole Coulomb attraction can be
enhanced by growing layered structures with a strong dielectric mismatch [17]. Unfortunately,
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Figure 5. The exciton binding energy,Eb, versus the effective exciton Bohr radius,a, for the four
sets of V- and T-wires, and for the set of QWs. Dashed curves are fittings to a 1/a form. The inset
reports the average potential versus kinetic energy, falling on a straight line with slopeα ' 4 for
all wire samples. Results for QW structures are also shown for comparison; in this caseα ' 2.
Solid lines are linear fits to the calculated points. After reference [15].

in practice interfaces between III–V semiconductors and materials with very different dielectric
constants, such as oxides, are usually very far from the excellent optical quality of the
conventional ones. Recently, we have proposed an alternative approach [16] based on the
observation thatquantum and dielectric confinement can be spatially separated, since they
are effective over different length scales. This can be accomplished for QWRs by adding
remoteinsulating layers to the conventional structure (remote dielectric confinement, RDC);
in the new structure, the electron and hole wavefunctions are confined by the inner, lattice-and-
dielectric-matched GaAs/AlGaAs interfaces; the outer AlGaAs/oxide interfaces, owing to the
strong dielectric mismatch, provide polarization charges, thereby enhancing the electron–hole
interaction, as discussed in section 3.2.

In this section we review results obtained for GaAs/AlGaAs-based structures, and we show
that RDC allows for a very large increase ofEb, up to three times the binding energy of the
corresponding conventional structure, without degrading the good optical properties typical
of these systems. As prototypical samples, we consider once more the two GaAs-based V-
shaped and T-shaped wires of references [8] and [11]. Starting from these geometries, we
design hybrid structures, adding oxide layers at some distance from the inner GaAs region.
The oxide layers are characterized by a small dielectric constant, that we take equal to 2 [24].

We first consider a V-shaped structure, to which we add two oxide layers, below and above
(see figure 6(a)), at a distanceL from the GaAs/AlAs interfaces. For the sample shown in
figure 6(a), we findEb = 29.3 meV, to be compared with 13 meV for the conventional (i.e.,
with no oxide layers) structure. Figure 6(a) shows that the origin of this dramatic enhancement
is the large polarization of the AlAs/oxide interfaces induced by the hole charge density; the
polarization is larger in the region where the hole is localized, and is more pronounced at the
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Figure 6. (a) A cross-section of a hybrid V-wire showing the interface polarization charge induced
by the charge-density distribution of the lowest-subband hole; the oxide layers are atL = 5 nm
from the GaAs/AlAs interfaces. (b)Eb versus the distance of the oxide layers from the internal
interfaces,L. Solid dots: full calculation. Solid curve: equation (41) withL0 = 6.56 nm. Dashed
line: the energyE0 of the corresponding conventional structure (no oxide layers). Dotted line: the
thermal energy atTroom = 300 K. After reference [16].

lower interface, due to the larger curvature. A small polarization charge is also induced at the
GaAs/AlAs interface, due to the small dielectric mismatch. Note that quantum confinement
localizes the wavefunction well within the inner interfaces; therefore, the possible disorder of
the AlAs/oxide interface does not affect the electron and hole wavefunctions.

In figure 6(b) we show the calculatedEb for selected values ofL. We also show, for
comparison, the calculated binding energy for the conventional structure,E0, and the room-
temperature thermal energy.Eb is maximum when the oxide layer is at minimum distance:
it is enhanced by a factor larger than 3 with respect toE0, and it is well abovekTroom. It is



5984 F Rossi et al

important to note thatEb decreases slowly withL, and is still significantly larger thankTroom

at L = 6 nm. SinceEb is the result of the Coulomb interaction of, say, the electron with
the holeand the polarization charge which is excited at a distance∼ L by it, we intuitively
expectEb to decay asL−1, with a typical decay lengthL0 comparable to the Bohr radius in
the wire [15]; this, in turn, is of the order of the confinement length. Indeed, figure 6(b) shows
thatEb is very well interpolated by

Eb(L) = E0 +
Eb(0)

1 +L/L0
(41)

with L0 = 6.56 nm. Note thatEb crosseskTroom whenL is as large as 9 nm.
Let us now discuss results for a GaAs/AlAs structure formed by GaAs parent QWs of the

same width, and AlAs barriers (see figure 7(a)). An oxide layer is added on top of the exposed
surface at a distanceL from the underlying QW. Note that, in this case, an oxide layer is
present only on one side of the structure. As in the previous case, a strong polarization charge
forms at the AlAs/oxide interface, with a maximum in the region of the hole wavefunction
confinement. A small polarization charge is also present at the GaAs/AlAs interface, peaked
around the corners of the intersecting QWs. In figure 7(b) we show the calculatedEb versus
L. The binding energy for the conventional structure,E0, and the room-temperature thermal
energy are also shown for comparison. As in the V-wire case,Eb is maximum atL = 0, where
it is enhanced by a factor of 1.5 with respect toE0, and decreases slowly withL. Although
Eb is smaller than in the previous case, for the smallestL-valuesEb is still of the order of
kTroom. It is important to note that the reduced effect of dielectric confinement with respect to
that of the previous example is just due to the presence of a single oxide layer, i.e., geometric
effects due to different wire cross-sections play a minor role. In fact, despite the very different
geometry,Eb decays withL in the same way in both cases. As shown in figure 7(b), in this
case alsoEb is very well interpolated by equation (41) withL0 = 7.55 meV, which is still of
the order of the carrier confinement length.

We finally comment on the effect of the self-energy term1ε introduced in section 3.2
(see equation (38)). We have compared the full calculations discussed above with calculations
performed neglecting1ε(r) in the single-particle potential. For the V-shaped structure we
have verified that the self-energy contribution tends to increaseEb, but it is so small (<0.2 meV)
that the two results cannot be distinguished on the scale of figure 6(b). In the T-wire case, on
the other hand, the effect of the self-energy term is qualitatively and quantitatively different,
as can be seen from figure 7(b); in fact, the self-energy contribution amounts to∼1 meV at
the smallestL, and tends to reduceEb. This is a consequence of the interplay between the
dielectric confinement and the shallow quantum confinement of these structures.

In summary, the above results show that a dramatic enhancement of the exciton binding in
GaAs-based quantum structures is expected to be induced by remote insulating layers, bringing
Eb into the range of the room-temperature thermal energy. Although, in real structures, several
nanometre-wide spacer layers might be necessary to maintain the excellent optical efficiency
typically obtained within the GaAs-based technology, we have shown thatEb scales slowly
with the width of the spacer layer, thus allowing the design of nanostructures that should be
compatible with optical efficiency but with a very large exciton binding energy.

7. Local spectroscopy of coupled QWR structures

All of the results presented so far are obtained in the so-called global excitation regime discussed
in section 2.1, i.e., they are induced by homogeneous light fields treated within the dipole
approximation. In this section we review recent calculations of local absorption spectra for
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Figure 7. (a) As figure 6(a), but for a hybrid T-wire. The QW widths are 5.4 nm andL = nm.
(b) Eb versusL including (solid dots) and neglecting (empty dots) the self-energy contribution.
Solid curve: equation (41) withL0 = 7.55 nm. Dashed line: energyE0 of the corresponding
conventional structure (no oxide layers). Dotted line: thermal energy atTroom = 300 K. After
reference [16].

coupled QWRs structures, based on the space-dependent formulation presented in section 2.2.
The appearance of optical spectroscopies with high spatial resolution, combined with

improved control in the fabrication of semiconductor nanostructures, has made it possible
to study the optical response of individual quantum wires and dots. When the resolution is
reduced to below the diffraction limit [25], it is possible not only to investigate individual nano-
structures, but also to study Coulomb-correlation phenomena and new effects of coherence
and coupling between spatially separated quantum states. In conventional optical experiments,
the light field is essentially constant in amplitude and phase over the spatial extent of the
relevant quantum mechanical states. In contrast, microprobe techniques make use of highly
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inhomogeneous light fields: in analogy with ultrafast time-resolved spectroscopies [5], that
have shown the importance of phase coherence in the quantum mechanical time evolution of
photoexcited carriers, it may be expected that spatial interference of quantum states plays a
dominant role when variations of the EM field occur on an ultrashort length scale.

On the theoretical side, however, few studies have so far investigated the response under
these conditions; most studies focus on the near-field distribution of the EM field [26] and
its interaction with arrays of point-like particles [27]; only recently has the response to an
inhomogeneous EM field in a semiconductor quantum dot been studied within the single-
particle approximation [28].

Since the phase of the relevant quantum states is dominated by electron–hole correlations
on the scale of the exciton Bohr radius, to emphasize potential Coulomb-coupling effects
we show results obtained for a Gaussian light beam withσ = 10 nm (close to the Bohr
radius in GaAs), although near-field scanning optical microscopy (NSOM) experiments on
semiconductors are currently still limited to higher values ofσ . As a prototype system showing
non-local effects we consider two coupled semiconductor T-shaped wires [29] (see the inset
in figure 8(a)). In order to obtain spatially separated transitions we consider an asymmetric
structure; the distance between the wires is chosen to allow Coulomb coupling between them.
The single-particle electron and hole ground states (E1, H1) are localized in the widest wire
(right-hand wire, RW) and the second bound states (E2, H2) in the left-hand wire (LW).

Figure 8. Local absorptionα(R, h̄ω)as a function of photon energy and beam position for a coupled
T-wire nanostructure. The spectra are calculated (a) within the single-particle approximation,
and (b) including the electron–hole Coulomb correlation. Here,σ = 10 nm. TheX-coordinate
represents the beam position along the dashed line in the inset; the centres of the wires are indicated
by arrows. The vertical GaAs stems are 5.4 nm and 6.0 nm wide, separated by a 5.4 nm AlAs
layer; the horizontal well is 5.4 nm wide. The labels A, B, C, D identify the main structures (see
the text).

Figure 8 shows the local absorptionα(R, h̄ω) (see equation (30) in section 2.2) as a
function of photon energy and with the beam position sweeping across the structure (see the
inset). If the electron–hole interaction is neglected (figure 8(a)) the spectrum is essentially
composed of two structures, both with the inverse-square-root high-energy tail typical of the
1D free-particle density of states; the signal from the E1–H1 transition is spatially located on
the RW while a second peak, located on the LW, stems from the E2–H2 transition; in this
uncorrelated case the influence of spatially indirect transitions (E1–H2, E2–H1) is negligible.

The correlated carrier spectrum (figure 8(b)) is red-shifted by the excitonic binding
energy [15] (∼14 meV), and the corresponding continuum is strongly suppressed by electron–
hole correlation [3]. The two main peaks (A and B) still have their largest contributions in
the RW and LW, respectively; however, two weaker structures, C and D, appear which are
strongly localized in either wire and have no equivalent in the uncorrelated spectrum. Peak A
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is the ground-state exciton (E1–H1), and is mainly localized in the RW, but has a significant
intensity also in the LW. Peak C also originates from the RW where a second bound exciton
is introduced in the presence of Coulomb coupling with the LW. Peak B stems from several
exciton states, with a major component in the E2–H2 transition on the LW. The shoulder D
(mostly a E2–H1 transition) is very intense in the local spectrum centred on the LW, completely
absent when the beam is centred on the RW, and very reduced in the global spectrum.

We stress that the strong localization of D comes from the interference between positive
and negative regions of the exciton wavefunction9λ (see equation (30)), whose cancellation
depends on the position of the beam.

In summary, we have shown that when the spatial resolution of the optical excitation pulse
becomes comparable to the exciton Bohr radius, the local optical absorption is dominated by
electron–hole correlations. Similar calculations performed on terraces originating from QW
thickness fluctuations confirm that these phenomena are general, and especially significant
for coupled nanostructures when they are investigated with spatial resolution of the order of
the Bohr radius. The breaking of far-field selection rules that is expected to occur at such
resolutions might then give insight into Coulomb-correlation and coherence phenomena.
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